Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610396

ABSTRACT

The increasing popularity of pigs has prompted farmers to increase pig production to meet the growing demand. However, while the number of pigs is increasing, that of farm workers has been declining, making it challenging to perform various farm tasks, the most important among them being managing the pigs' health and welfare. This study proposes a pattern mining-based pig behavior analysis system to provide visualized information and behavioral patterns, assisting farmers in effectively monitoring and assessing pigs' health and welfare. The system consists of four modules: (1) data acquisition module for collecting pigs video; (2) detection and tracking module for localizing and uniquely identifying pigs, using tracking information to crop pig images; (3) pig behavior recognition module for recognizing pig behaviors from sequences of cropped images; and (4) pig behavior analysis module for providing visualized information and behavioral patterns to effectively help farmers understand and manage pigs. In the second module, we utilize ByteTrack, which comprises YOLOx as the detector and the BYTE algorithm as the tracker, while MnasNet and LSTM serve as appearance features and temporal information extractors in the third module. The experimental results show that the system achieved a multi-object tracking accuracy of 0.971 for tracking and an F1 score of 0.931 for behavior recognition, while also highlighting the effectiveness of visualization and pattern mining in helping farmers comprehend and manage pigs' health and welfare.


Subject(s)
Algorithms , Recognition, Psychology , Swine , Animals , Farms , Systems Analysis
2.
Sensors (Basel) ; 23(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36991606

ABSTRACT

The popularity of dogs has been increasing owing to factors such as the physical and mental health benefits associated with raising them. While owners care about their dogs' health and welfare, it is difficult for them to assess these, and frequent veterinary checkups represent a growing financial burden. In this study, we propose a behavior-based video summarization and visualization system for monitoring a dog's behavioral patterns to help assess its health and welfare. The system proceeds in four modules: (1) a video data collection and preprocessing module; (2) an object detection-based module for retrieving image sequences where the dog is alone and cropping them to reduce background noise; (3) a dog behavior recognition module using two-stream EfficientNetV2 to extract appearance and motion features from the cropped images and their respective optical flow, followed by a long short-term memory (LSTM) model to recognize the dog's behaviors; and (4) a summarization and visualization module to provide effective visual summaries of the dog's location and behavior information to help assess and understand its health and welfare. The experimental results show that the system achieved an average F1 score of 0.955 for behavior recognition, with an execution time allowing real-time processing, while the summarization and visualization results demonstrate how the system can help owners assess and understand their dog's health and welfare.


Subject(s)
Data Collection , Dogs , Animals
3.
Sensors (Basel) ; 22(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36366013

ABSTRACT

The automatic detection of individual pigs can improve the overall management of pig farms. The accuracy of single-image object detection has significantly improved over the years with advancements in deep learning techniques. However, differences in pig sizes and complex structures within pig pen of a commercial pig farm, such as feeding facilities, present challenges to the detection accuracy for pig monitoring. To implement such detection in practice, the differences should be analyzed by video recorded from a static camera. To accurately detect individual pigs that may be different in size or occluded by complex structures, we present a deep-learning-based object detection method utilizing generated background and facility information from image sequences (i.e., video) recorded from a static camera, which contain relevant information. As all images are preprocessed to reduce differences in pig sizes. We then used the extracted background and facility information to create different combinations of gray images. Finally, these images are combined into different combinations of three-channel composite images, which are used as training datasets to improve detection accuracy. Using the proposed method as a component of image processing improved overall accuracy from 84% to 94%. From the study, an accurate facility and background image was able to be generated after updating for a long time that helped detection accuracy. For the further studies, improving detection accuracy on overlapping pigs can also be considered.


Subject(s)
Image Processing, Computer-Assisted , Swine , Animals , Image Processing, Computer-Assisted/methods , Farms , Data Collection
4.
Sensors (Basel) ; 22(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35632328

ABSTRACT

Infrared cameras allow non-invasive and 24 h continuous monitoring. Thus, they are widely used in automatic pig monitoring, which is essential to maintain the profitability and sustainability of intensive pig farms. However, in practice, impurities such as insect secretions continuously pollute camera lenses. This causes problems with IR reflections, which can seriously affect pig detection performance. In this study, we propose a noise-robust, real-time pig detection system that can improve accuracy in pig farms where infrared cameras suffer from the IR reflection problem. The system consists of a data collector to collect infrared images, a preprocessor to transform noisy images into clean images, and a detector to detect pigs. The preprocessor embeds a multi-scale spatial attention module in U-net and generative adversarial network (GAN) models, enabling the model to pay more attention to the noisy area. The GAN model was trained on paired sets of clean data and data with simulated noise. It can operate in a real-time and end-to-end manner. Experimental results show that the proposed preprocessor was able to significantly improve the average precision of pig detection from 0.766 to 0.906, with an additional execution time of only 4.8 ms on a PC environment.


Subject(s)
Image Processing, Computer-Assisted , Animals , Farms , Image Processing, Computer-Assisted/methods , Swine
5.
Sensors (Basel) ; 22(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408302

ABSTRACT

Knowing the number of pigs on a large-scale pig farm is an important issue for efficient farm management. However, counting the number of pigs accurately is difficult for humans because pigs do not obediently stop or slow down for counting. In this study, we propose a camera-based automatic method to count the number of pigs passing through a counting zone. That is, using a camera in a hallway, our deep-learning-based video object detection and tracking method analyzes video streams and counts the number of pigs passing through the counting zone. Furthermore, to execute the counting method in real time on a low-cost embedded board, we consider the tradeoff between accuracy and execution time, which has not yet been reported for pig counting. Our experimental results on an NVIDIA Jetson Nano embedded board show that this "light-weight" method is effective for counting the passing-through pigs, in terms of both accuracy (i.e., 99.44%) and execution time (i.e., real-time execution), even when some pigs pass through the counting zone back and forth.


Subject(s)
Algorithms , Animals , Farms , Swine
6.
Sensors (Basel) ; 22(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35214457

ABSTRACT

An increasing number of people own dogs due to the emotional benefits they bring to their owners. However, many owners are forced to leave their dogs at home alone, increasing the risk of developing psychological disorders such as separation anxiety, typically accompanied by complex behavioral symptoms including excessive vocalization and destructive behavior. Hence, this work proposes a multi-level hierarchical early detection system for psychological Separation Anxiety (SA) symptoms detection that automatically monitors home-alone dogs starting from the most fundamental postures, followed by atomic behaviors, and then detecting separation anxiety-related complex behaviors. Stacked Long Short-Term Memory (LSTM) is utilized at the lowest level to recognize postures using time-series data from wearable sensors. Then, the recognized postures are input into a Complex Event Processing (CEP) engine that relies on knowledge rules employing fuzzy logic (Fuzzy-CEP) for atomic behaviors level and higher complex behaviors level identification. The proposed method is evaluated utilizing data collected from eight dogs recruited based on clinical inclusion criteria. The experimental results show that our system achieves approximately an F1-score of 0.86, proving its efficiency in separation anxiety symptomatic complex behavior monitoring of a home-alone dog.


Subject(s)
Anxiety, Separation , Behavior, Animal , Animals , Anxiety , Anxiety, Separation/diagnosis , Dogs , Fuzzy Logic , Posture
7.
Sensors (Basel) ; 18(11)2018 Nov 18.
Article in English | MEDLINE | ID: mdl-30453674

ABSTRACT

The use of IoT (Internet of Things) technology for the management of pet dogs left alone at home is increasing. This includes tasks such as automatic feeding, operation of play equipment, and location detection. Classification of the vocalizations of pet dogs using information from a sound sensor is an important method to analyze the behavior or emotions of dogs that are left alone. These sounds should be acquired by attaching the IoT sound sensor to the dog, and then classifying the sound events (e.g., barking, growling, howling, and whining). However, sound sensors tend to transmit large amounts of data and consume considerable amounts of power, which presents issues in the case of resource-constrained IoT sensor devices. In this paper, we propose a way to classify pet dog sound events and improve resource efficiency without significant degradation of accuracy. To achieve this, we only acquire the intensity data of sounds by using a relatively resource-efficient noise sensor. This presents issues as well, since it is difficult to achieve sufficient classification accuracy using only intensity data due to the loss of information from the sound events. To address this problem and avoid significant degradation of classification accuracy, we apply long short-term memory-fully convolutional network (LSTM-FCN), which is a deep learning method, to analyze time-series data, and exploit bicubic interpolation. Based on experimental results, the proposed method based on noise sensors (i.e., Shapelet and LSTM-FCN for time-series) was found to improve energy efficiency by 10 times without significant degradation of accuracy compared to typical methods based on sound sensors (i.e., mel-frequency cepstrum coefficient (MFCC), spectrogram, and mel-spectrum for feature extraction, and support vector machine (SVM) and k-nearest neighbor (K-NN) for classification).


Subject(s)
Neural Networks, Computer , Vocalization, Animal/classification , Algorithms , Animals , Behavior, Animal/classification , Dogs
8.
Sensors (Basel) ; 18(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-29843479

ABSTRACT

Segmenting touching-pigs in real-time is an important issue for surveillance cameras intended for the 24-h tracking of individual pigs. However, methods to do so have not yet been reported. We particularly focus on the segmentation of touching-pigs in a crowded pig room with low-contrast images obtained using a Kinect depth sensor. We reduce the execution time by combining object detection techniques based on a convolutional neural network (CNN) with image processing techniques instead of applying time-consuming operations, such as optimization-based segmentation. We first apply the fastest CNN-based object detection technique (i.e., You Only Look Once, YOLO) to solve the separation problem for touching-pigs. If the quality of the YOLO output is not satisfied, then we try to find the possible boundary line between the touching-pigs by analyzing the shape. Our experimental results show that this method is effective to separate touching-pigs in terms of both accuracy (i.e., 91.96%) and execution time (i.e., real-time execution), even with low-contrast images obtained using a Kinect depth sensor.


Subject(s)
Swine/physiology , Touch/physiology , Animals , Humans , Image Processing, Computer-Assisted , Monitoring, Physiologic/methods , Neural Networks, Computer
9.
Sensors (Basel) ; 17(12)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29186060

ABSTRACT

In a surveillance camera environment, the detection of standing-pigs in real-time is an important issue towards the final goal of 24-h tracking of individual pigs. In this study, we focus on depth-based detection of standing-pigs with "moving noises", which appear every night in a commercial pig farm, but have not been reported yet. We first apply a spatiotemporal interpolation technique to remove the moving noises occurring in the depth images. Then, we detect the standing-pigs by utilizing the undefined depth values around them. Our experimental results show that this method is effective for detecting standing-pigs at night, in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (i.e., 94.47%), even with severe moving noises occluding up to half of an input depth image. Furthermore, without any time-consuming technique, the proposed method can be executed in real-time.


Subject(s)
Posture , Animals , Noise , Swine
10.
Sensors (Basel) ; 17(2)2017 Jan 29.
Article in English | MEDLINE | ID: mdl-28146057

ABSTRACT

Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

11.
Sensors (Basel) ; 16(5)2016 05 02.
Article in English | MEDLINE | ID: mdl-27144572

ABSTRACT

Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. In this study, we developed a non-invasive, inexpensive, automatic monitoring prototype system that uses a Kinect depth sensor to recognize aggressive behavior in a commercial pigpen. The method begins by extracting activity features from the Kinect depth information obtained in a pigsty. The detection and classification module, which employs two binary-classifier support vector machines in a hierarchical manner, detects aggressive activity, and classifies it into aggressive sub-types such as head-to-head (or body) knocking and chasing. Our experimental results showed that this method is effective for detecting aggressive pig behaviors in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (detection and classification accuracies over 95.7% and 90.2%, respectively), either as a standalone solution or to complement existing methods.


Subject(s)
Aggression , Biosensing Techniques , Support Vector Machine , Swine , Animal Husbandry , Animals , Head , Sus scrofa
12.
Sensors (Basel) ; 16(4)2016 Apr 16.
Article in English | MEDLINE | ID: mdl-27092509

ABSTRACT

Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods.

13.
Sensors (Basel) ; 15(4): 7953-68, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25850068

ABSTRACT

In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security.

14.
Asian-Australas J Anim Sci ; 28(4): 592-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25656176

ABSTRACT

Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

15.
Sensors (Basel) ; 13(10): 12929-42, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24072029

ABSTRACT

Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. Further, respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this study, we propose an efficient data mining solution for the detection and recognition of pig wasting diseases using sound data in audio surveillance systems. In this method, we extract the Mel Frequency Cepstrum Coefficients (MFCC) from sound data with an automatic pig sound acquisition process, and use a hierarchical two-level structure: the Support Vector Data Description (SVDD) and the Sparse Representation Classifier (SRC) as an early anomaly detector and a respiratory disease classifier, respectively. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (even a cheap microphone can be used) and accurately (94% detection and 91% classification accuracy), either as a standalone solution or to complement known methods to obtain a more accurate solution.


Subject(s)
Auscultation/methods , Pattern Recognition, Automated/methods , Population Surveillance/methods , Porcine Postweaning Multisystemic Wasting Syndrome/diagnosis , Porcine Postweaning Multisystemic Wasting Syndrome/physiopathology , Respiratory Sounds/physiopathology , Sound Spectrography/methods , Animals , Auscultation/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Sound Spectrography/instrumentation , Support Vector Machine , Swine
16.
Sensors (Basel) ; 12(11): 14647-70, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23202181

ABSTRACT

In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2~5 without compromising image/video quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...